Organic Layers on Silicon Result in a Unique Hybrid Fet
نویسندگان
چکیده
A Field-Effect Transistor (FET) is presented that combines the conventional lay-out of the silicon substrate (channel and source and drain connections) with a Si-C linked organic gate insulator contacted via an organic, conducting polymer. It is shown that this hybrid device combines the excellent electrical behavior of the silicon substrate and the ease of use and good properties of organic insulators and contacting materials.
منابع مشابه
Review on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملReview on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملRole of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells.
A hybrid approach to solar cells is demonstrated in which a silicon p-n junction, used in conventional silicon-based photovoltaics, is replaced by a room-temperature fabricated silicon/organic heterojunction. The unique advantage of silicon/organic heterojunction is that it exploits the cost advantage of organic semiconductors and the performance advantages of silicon to enable potentially low-...
متن کاملMonte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays Using the FLUKA Code
In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...
متن کاملImpact of Process Variations on the Vertical Silicon Nanowire Tunneling FET (TFET)
This paper presents device simulations on the vertical silicon nanowire tunneling FET (VSiNW TFET). Simulations show that a narrow nanowire and thin gate oxide is required for good performance, which is expected even for conventional MOSFETs. The gate length also needs to be more than the nanowire diameter to prevent short channel effects. An effect more unique to TFET is the need for abrupt so...
متن کامل